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Abstract

This paper investigates the vibration displacement on substrate due to time-harmonic stress sources from a

micromechanical resonator fabricated using Microelectromechanical Systems (MEMS) technology. The vibrations of a

micromechanical resonator exert a time-harmonic stress across the clamped region on its substrate and further excite

elastic waves propagating into the substrate, therefore leading to the dissipation of vibration energy—commonly referred

to as support loss. Support loss can be quantitatively evaluated in terms of this time-harmonic stress and its corresponding

vibration displacement on substrate. To calculate this vibration displacement, this work treats the substrate as either a

semi-infinite or infinite elastic medium. Then, the classic elastic wave theories are utilized to describe its behavior, and the

Fourier transform or Hankel transform is employed for dealing with the geometrical infinity of the substrate.

Consequently, the mathematical expressions for this vibration displacement, under several typical time-harmonic stress

sources in micromechanical resonators, are derived. As a result, this work provides the basis for quantitatively evaluating

support loss in a micromechanical resonator and predicts the relation of support loss versus some key resonator design

parameters and substrate materials.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Due to their small size, low-cost batch fabrication and low power consumption, micromechanical
resonators fabricated using Microelectromechanical Systems (MEMS) technology have been of great interests
for a wide range of sensing and wireless communication applications [1–11], where micromechanical
resonators function as accelerometers [1], gyroscopes [2,3], oscillators [4,5], or electrical filters [6–11]. For their
practical applications, energy loss mechanisms or quality factors (Q) of micromechanical resonators are of
critical importance, as a higher Q in such devices translates to higher sensitivity, better bias stability, and
improved resolution [2–4]. Therefore, these micromechanical resonators are preferred (also feasible due to
their small size) to be packaged in vacuum for operation so that air damping is eliminated. Consequently,
support loss, thermoelastic damping (TED) and surface loss come to the fore and the overall measured Quality
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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factor of a micromechanical resonator operating in vacuum is expressed as [12–14]:

1

Qmeasured

ffi
1

Qsupport

þ
1

QTED

þ
1

Qsurface

. (1)

Apparently, these three loss mechanisms become the major bottlenecks for these resonators’ performance.
Toward this end, one needs to understand energy loss mechanisms in such devices, not only for predicting the
Q of a micromechanical resonator at the design stage, but also for improving their performance through
design and fabrication tradeoff.

This work is aimed to aid in quantitatively addressing support loss in a micromechanical resonator and
establishing the relation between support loss and the key design parameters of a resonator. The physical
mechanism of support loss is illustrated in Fig. 1 [12,15]. Support loss, also known as anchor loss, is the
portion of the vibration energy of a resonator dissipated by transmission through its support or substrate.
During its vibrations, a micromechanical resonator exerts a time-harmonic stress across the clamped region on
its substrate. Acting as an excitation source, this time-harmonic stress will further excite elastic waves
propagating into the substrate. Part of the vibration energy dissipated through elastic wave propagation in
support media—substrate is commonly referred to as support loss.

As will be described in the following section, support loss can be calculated in terms of the time-harmonic stress
from a resonator and its corresponding vibration displacement on substrate. The time-harmonic stress from the
vibrations of a micromechanical resonator can be easily obtained using a finite element modeling (FEM) tool,
such as ANSYS. In contrast, the calculation of the vibration displacement on substrate imposes significant
technical challenges, simply because of the extremely large geometry of the substrate relative to the clamped
region of a resonator. Therefore, this paper focuses on providing a comprehensive derivation of the vibration
displacement on substrate, under those typical time-harmonic stress sources in micromechanical resonators.

Fig. 2 shows a SEM (scanning electron microscope) picture of a portion of a die with micromechanical
resonators sitting on top of the substrate. The in-plane dimension and thickness of the substrate (or the die)
are typically 1 cm� 1 cm and 500 mm, respectively. In contrast, the clamped region of a micromechanical
resonator is typically 150 mm� 150 mm. As compared to the clamped region, the substrate is extremely large
and thus can be treated as either a semi-infinite or an infinite medium. Then, we can utilize the large body of
literature on the investigation of the vibration displacement on a semi-infinite or infinite elastic medium
[16–20], which were originally developed for other applications (e.g., earthquake and acoustic emission) over
the past century, to find out the vibration displacement on substrate that is particularly tailored to
micromechanical resonators. Compared with the related work in the existing literature [16–20], our original
contributions are: (1) this work presents the derivation of the vibration displacement on substrate in a much
more accessible way than the corresponding original artworks published more than half century ago, for the
purpose of making the derived formulas clear and beneficial to the MEMS community, where the elastic wave
theories is not a very familiar topic. Accordingly, readers can choose the formulas suitable for their cases to
predict support loss and improve the design of micromechanical resonators. (2) For the first time, the
derivation of the vibration displacement on substrate is organized and the physical implication of the derived
formulas is explored in the application context of micromechanical resonators. (3) The numerical values for
the integrals involved in different configurations of micromechanical resonators are provided.
Time-harmonic stress

Micromechanical resonator
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Elastic wave 
propagation 
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Fig. 1. Physical mechanism of support loss in a micromechanical resonator.
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Fig. 2. A SEM picture of partial die of micromechanical resonators sitting on top of a silicon substrate.
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This paper is organized as follows. Section 2 describes the fundamental assumptions for modeling support
loss and two typical configurations of a micromechanical resonator with respect to its substrate, leading to
different time-harmonic stress sources on a substrate. Then, Sections 3–5 review the classic elastic wave
theories and combine different time-harmonic stress sources with the Fourier transform or Hankel transform
to obtain the mathematical expressions for the vibration displacement on substrate. At the end, the results
obtained from these three sections are summarized and discussed, providing the mathematical expressions for
calculating support loss in a micromechanical resonator as well as the relation of support loss versus some key
resonator design parameters and substrate materials.

2. Fundamental assumptions and two typical configurations of a micromechanical resonator with respect to its

substrate

2.1. Fundamental assumptions

As described above, the vibrations of a micromechanical resonator cause a time-harmonic stress at the clamped
region and then this stress excites the elastic waves propagating in the substrate. It has been theoretically proved
[21] that, when the wavelength of the propagating elastic wave is much larger than the size of a clamped region,
the coupling between the vibration modes of a micromechanical resonator and the elastic wave modes in its
substrate is very weak and hence the energy transmission from the clamped region to the substrate can be treated
as perturbation. Therefore, a resonator and its substrate can be separated and the time-harmonic stress at the
clamped region from the resonator can be treated as the excitation source for the elastic wave propagation in the
substrate. A resonator die has very rough sidewalls, because it is created by cutting a whole silicon wafer into
many dies using a dicing saw. Similar to mirror reflection, the rough sidewalls will absorb the elastic waves and
result in no energy being reflected back to the substrate. Hence, it is reasonable to assume that all the vibration
energy of a micromechanical resonator that enters its substrate propagates away to large distances, so that no
energy is returned to the resonator. To make the theoretical derivation of the vibration displacement on substrate
possible [16–20], it is also assumed that the stress is uniformly distributed across a clamped region.

In order to calculate support loss, the assumptions discussed above are summarized as below:
(1)
 There is negligible coupling between the vibrations in the resonator and the elastic waves in the substrate
[12,15,21].
(2)
 All the vibration energy entering the substrate is carried away to infinity and therefore is considered to be
lost [12,15,21].
(3)
 The time-harmonic stress is uniformly distributed across a clamped region [12,15–20].
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Fig. 3. Two typical configurations of a micromechanical resonator with respect to its substrate (note: the ratio of the resonator and the

substrate is out of proportion for better illustration), (a) a resonator is located within a substrate, where time-harmonic stress sources are

located within the substrate and (b) a resonator sits on top of a substrate, where time-harmonic stress sources are on the surface of the

substrate.
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Consequently, the vibrations of a micromechanical resonator can be described using the classic vibration
theory, where the clamped region has no displacement but suffers a time-harmonic stress from the vibrations.
The substrate is modeled as either a semi-infinite or infinite elastic medium, giving rise to the vibration
displacement on substrate caused by the stress source. Then, support loss in a micromechanical resonator can
be formulated as the integral of the product of the stress and the vibration displacement across the clamped
region per cycle of vibration [12]:

DW ¼ p
Z
clamped region

stress � displacement. (2)

In this equation, stress and displacement denote the amplitudes of the two time-harmonic parameters, since
p is factored in to account for the time-harmonic nature of the vibrations and elastic waves.

2.2. Two typical configurations of a micromechanical resonator with respect to its substrate

Figs. 3(a) and (b) illustrate two typical configurations of a micromechanical resonator with respect to its
substrate: a resonator is located within its substrate and a resonator sits on top of its substrate, respectively.
For simplicity, their integrated transducers for operation are not illustrated here. As shown in Fig. 3, a
micromechanical resonator is fixed to its substrate through the clamped regions. Each clamped region serves
as a time-harmonic stress source to excite elastic waves into the substrate. Based on these two typical
configurations, the time-harmonic stress sources can be categorized into two groups:
(1)
 Time-harmonic stress sources located within a substrate.

(2)
 Time-harmonic stress sources located on the surface of a substrate.
In addition, depending on the resonant mode utilized, a time-harmonic stress source can be either shear
stress or normal stress, but, in general, not both at the same time. The effect of bending moment on support
loss is negligible [12,21] relative to that caused by shear stress or normal stress and therefore is not considered
here. Furthermore, a micromechanical resonator may have either single stress source or multiple stress
sources, depending on how many clamped regions it has. The following three sections will derive the
mathematical expressions for the vibration displacement on substrate under several typical time-harmonic
stress sources in micromechanical resonators.

3. Vibration displacement due to time-harmonic stress sources located within a substrate

The typical time-harmonic stress sources located within a substrate are illustrated in Figs. 4 and 5. The
substrate is assumed as either semi-infinite or infinite thin-plate medium [12] of thickness, h, and the elastic
wave propagation can be described using the two-dimensional (2D) elastic wave theory. Therefore, this section
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Fig. 4. Single time-harmonic stress source is applied on a semi-infinite thin-plate medium of thickness, h, (a) shear stress source and (b)

normal stress source.
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Fig. 5. Double time-harmonic stress sources are applied on an infinite thin-plate medium of thickness, h, (a) shear stress sources and (b)

normal stress sources.
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first briefly reviews the 2D elastic wave equations and their Fourier transform and then combine the elastic
wave equations with different time-harmonic stress sources for obtaining the mathematical expressions for the
average vibration displacement on substrate.

3.1. 2D elastic wave equations and their Fourier transform

The governing equations for the 2D elastic wave theory with in-plane (x–y plane) displacements are given by
Ref. [22]:

q2ux

qt2
¼ c2L

q2ux

qx2
þ c2T

q2ux

qy2
þ ðc2L � c2T Þ

q2uy

qxqy
, (3a)

q2uy

qt2
¼ c2L

q2uy

qy2
þ c2T

q2uy

qx2
þ ðc2L � c2T Þ

q2ux

qxqy
, (3b)

where ux and uy are the displacement along the x-axis and y-axis, respectively. The 2D elastic waves can be
separated into longitudinal and transverse waves with propagation velocities:

c2L ¼
E

rð1� u2Þ
and c2T ¼

E

2rð1þ uÞ
, (4)

where cL and cT are the propagation velocities for longitudinal and transverse waves in the thin-plate (2D)
medium, respectively; r is the density of substrate material; E and u are the Young’s modulus and the
Poisson’s ratio of the substrate material, respectively. The ratio of the longitudinal propagation velocity to the
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transverse propagation velocity is denoted by:

g ¼ cL=cT ¼

ffiffiffiffiffiffiffiffiffiffiffi
2

1� u

r
. (5)

Due to the time-harmonic nature of the elastic waves, the following relations exist:

ux ¼ ueiot and uy ¼ veiot, (6)

where o denotes the frequency of the elastic waves; u and v denote the elastic wave amplitudes along the x-axis
and the y-axis, respectively. We further assume the following definitions [17]:

D ¼
qu

qx
þ

qv

qy
and O ¼

qu

qy
�

qv

qx
. (7)

Then, Eq. (2) can be rewritten as [17]:

�o2u ¼ c2L
qD
qx
þ c2T

qO
qy

, (8a)

�o2v ¼ c2L
qD
qy
� c2T

qO
qx

. (8b)

The above two equations can be further reorganized as [17]:

c2L
q2D
qx2
þ

q2D
qy2

� �
þ o2D ¼ 0, (9a)

c2T
q2O
qx2
þ

q2O
qy2

� �
þ o2O ¼ 0. (9b)

Due to the geometrical infinity of the substrate, the variable, x, needs to be removed from the above
equations. For this reason, we use the Fourier transform and its inverse transform defined by the following
equations [23]:

gðxÞ ¼
Z þ1
�1

f ðxÞe�ixy dy, (10a)

f ðyÞ ¼
1

2p

Z þ1
�1

gðxÞeixy dx, (10b)

where x is the variable of the Fourier transform. By applying the Fourier transform to Eqs. (8) and (9), the 2D
elastic wave equations can be rewritten in the following format [17]:

�o2uF ¼ c2L
dDF

dx
þ ixc2TOF , (11a)

�o2vF ¼ c2LixDF � c2T
dOF

dx
, (11b)

d2DF

dx2
� x2 �

o2

c2L

� �
DF ¼ 0, (12a)

d2OF

dx2
� x2 �

o2

c2T

� �
OF ¼ 0, (12b)

where the subscript F denotes the Fourier transform.
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3.2. Time-harmonic stresses and their Fourier transform

The excitation sources for the elastic wave propagation in a substrate are the time-harmonic stress sources
located at the clamped regions of a micromechanical resonator. In terms of in-plane displacements in a
thin-plate medium, the shear stress toward the y-axis and the normal stress toward the x-axis, as illustrated in
Figs. 4 and 5, are given by Ref. [22]:

txy ¼
E

2ð1þ uÞ
qu

qy
þ

qv

qx

� �
, (13a)

sxx ¼
E

1� u2
qu

qx
þ u

qv

qy

� �
, (13b)

respectively, which can also be rewritten as [17]:

o2

rc4T
txy ¼

q2O
qx2
�

q2O
qy2

� �
� 2g2

q2D
qxqy

, (14a)

o2

rc4T
sxx ¼ �2

q2O
qxqy

� g4
q2D
qx2
þ ð2g2 � g4Þ

q2D
qy2

. (14b)

Taking the Fourier transform of Eqs. (14) yields the following expressions for the transformed excitation
stress sources [17]:

o2

rc4T
txyF
¼

d2OF

dx2
þ x2OF

� �
� 2ixg2

dDF

dx
, (15a)

o2

rc4T
sxxF
¼ �2ix

dOF

dx
� g4

d2DF

dx2
� ð2g2 � g4Þx2DF . (15b)
3.3. Vibration displacement due to single time-harmonic stress source

As illustrated in Fig. 4(a), a uniform shear stress source is applied across the clamped region at the edge of
the semi-infinite thin-plate medium:

txy ¼ t0; for x ¼ 0; y 2 ð�b=2; b=2Þ, (16)

where t0 is a constant and is determined by the vibrations in a micromechanical resonator.
Through combing Eq. (16) with Eqs. (10), (11), (12) and (15), the mathematical expression for the average

vibration displacement across the clamped region is written as [17]:

v ¼ bt0
4

p
1þ u

Eð1� uÞ
P1

� �
for x ¼ 0; y 2 ð�b=2; b=2Þ, (17)

where

P1ðgÞ ¼ Im

Z 1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � g2

q
F0ðzÞ

dz

0
@

1
A

is the imaginary part of the integral constant in the parenthesis. In this integral, z ¼ xcL=o is assumed and the
following relation is utilized:

F0ðz; gÞ ¼ f2z
2
� g2g2 � 4z2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � g2

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

q
. (18)
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As illustrated in Fig. 4(b), a uniform normal stress source is applied across the clamped region at the edge of
the semi-infinite thin-plate medium:

sxx ¼ s0 for x ¼ 0; y 2 ð�b=2; b=2Þ, (19)

where s0 is a constant and is determined by the vibrations in a micromechanical resonator.
Similarly, the combination of Eq. (19) with Eqs. (10)–(12) and (15) gives rise to the average vibration

displacement across the clamped region [17]:

u ¼ bs0
4

p
1þ u

Eð1� uÞ
P2

� �
for x ¼ 0; y 2 ð�b=2; b=2Þ, (20)

where

P2ðgÞ ¼ Im

Z 1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p
F 0ðzÞ

dz

 !
.

3.4. Vibration displacement due to double time-harmonic stress sources

As illustrated in Fig. 5, this subsection considers the case where double time-harmonic stress sources are
applied across the two rectangular clamped regions, with a distance of L between the centers of the two
regions, on an infinite thin-plate elastic medium. To account for the effect of the two stress sources on the
vibration displacement, first, we need to analyze the vibration displacement across each clamped region caused
by only one stress source. Then, the vibration displacement across each clamped region caused by the other
stress source is added up, according to the superposition principle.

As illustrated in Fig. 5(a), there are two identical uniform shear stress sources, t0, across the two rectangular
clamped regions:

txy ¼ t0 for x ¼ �L=2; y 2 ð�b=2; b=2Þ. (21)

Now, we consider only the stress source at x ¼ �L/2. By combining this stress source with Eqs. (10)–(12)
and (15), the average vibration displacements across the two clamped regions, under the stress source at
x ¼ �L/2, take the following format:

v ¼
bt0
8E
ðuþ 1Þðu� 3Þ for x ¼ �L=2; y 2 ð�b=2; b=2Þ, (22a)

v ¼
bt0
2pE

P3 for x ¼ L=2; y 2 ð�b=2; b=2Þ, (22b)

where

P3ðg; kÞ ¼
Z 1

0

z2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p cos

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
2pk

� �
ð1� u2Þ þ 2ð1þ uÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
cos

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
2pk

� �" #
dz

is an integral constant having a pure real value. Note that the distance between the centers of the two stress
sources is expressed in terms of a dimensionless parameter—wavenumber, k ¼ L/l, where l ¼ CL/f denotes
the wavelength in the substrate, with f being the resonant frequency of the elastic waves and also that of the
elastic vibrations of the resonator.

According to the superposition principle, the average vibration displacement across each clamped region,
under the two stress sources, has the same expression written as below:

v ¼
bt0
8E
ðuþ 1Þðu� 3Þ þ

bt0
2pE

P3 for x ¼ �L=2; y 2 ð�b=2; b=2Þ. (23)

As illustrated in Fig. 5(b), there are two identical uniform normal stress sources, s0, across the two
rectangular clamped regions:

sxx ¼ s0 for x ¼ �L=2; y 2 ð�b=2; b=2Þ. (24)
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Similarly, we first obtain the expressions for the average vibration displacement, under the stress source at
x ¼ �L/2, across the two clamped regions:

u ¼
bs0
8E
ðuþ 1Þðu� 3Þ for x ¼ L=2; y 2 ð�b=2; b=2Þ, (25a)

u ¼
bs0
2pE

P4 for x ¼ L=2; y 2 ð�b=2; b=2Þ, (25b)

where

P4ðg; kÞ ¼
Z 1

0

z2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p cos

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
2pk

� �
2ð1þ uÞ þ ð1� u2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
cos

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
2pk

� �" #
dz

is an integral constant having a pure real value. Then, based on the superposition principle, the average
displacement across each clamped region, under the two stress sources, takes the following format:

u ¼
bs0
8E
ðuþ 1Þðu� 3Þ þ

bs0
2pE

P4 for x ¼ �L=2; y 2 ð�b=2; b=2Þ. (26)
4. Vibration displacement due to single circular time-harmonic stress source located on the surface of a substrate

As illustrated in Fig. 6, a uniform normal stress source is applied across the circular clamped region of
radius, a, on the surface of the substrate and excites the elastic wave propagation into the substrate. In this
case, the substrate is modeled as a semi-infinite elastic medium and the cylindrical coordinates (r, y, z) are
utilized accordingly. Since all the variables involved are independent of the circumferential direction, y, the
terms related to this direction are omitted in the following analysis. This section reviews the 3D elastic wave
equations in cylindrical coordinates and their Hankel transform, and combines the elastic wave equations with
the stress source to obtain the average vibration displacement on substrate.
4.1. 3D elastic wave equations and their Hankel transform

As illustrated in Fig. 6, the substrate is modeled as a semi-infinite medium and its behavior can be described
using the 3D elastic wave theory [17]:

q2O
qz2
þ

q
qr

1

r

qðrOÞ
qr

� �
þ

o2

c2T
O ¼ 0, (27a)
Semi-infinite elastic medium

Surface 

r

z

o

a

θ

�zz

Fig. 6. A circular time-harmonic stress source is applied on the surface of a semi-infinite elastic medium.
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q2D
qz2
þ

1

r

q
qr

r
qD
qr

� �
þ

o2

c2L
D ¼ 0. (27b)

In the above equations, it has assumed that ~uðr; z; tÞ ¼ eiotður~rþ uz~zÞ, where o is the frequency of the elastic
waves; ur and uz are the elastic wave amplitudes along the r-axis and z-axis, respectively. In addition, the
following relations are defined [17]:

D ¼
1

r

q
qr
ðrurÞ þ

quz

qz
and O ¼

qur

qz
�

quz

qr
. (28)

The propagation velocities for the longitudinal wave, cL, and the transverse wave, cT, in a 3D elastic medium
are, respectively, given by Ref. [17]:

c2L ¼
Eð1� uÞ

rð1þ uÞð1� 2uÞ
; c2T ¼

E

2rð1þ uÞ
. (29)

Again, g ¼ cL/cT is defined as the ratio of the longitudinal wave propagation velocity to the transverse wave
propagation velocity:

g ¼ cL=cT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� uÞ
1� 2u

r
. (30)

To account for the geometrical infinity of the substrate and cylindrical coordinates, we use the Hankel
transform defined by the following expressions [23]:

gðxÞH0 ¼

Z 1
0

f ðrÞrJ0ðxrÞdr; gðxÞH1 ¼

Z 1
0

f ðrÞrJ1ðxrÞdr, (31a)

f ðrÞH0 ¼

Z 1
0

gðxÞxJ0ðxrÞdr; f ðrÞH1 ¼

Z 1
0

gðxÞxJ1ðxrÞdr, (31b)

where x is the variable of this transform. Applying the Hankel transform to Eqs. (27) and (28) leads to the
following relations:

urH1 ¼ �
c2T
o2

dOH1

dz
� xg2DH0

� �
, (32a)

uzH0 ¼ �
c2T
o2

g2
dDH0

dz
� xOH1

� �
, (32b)

d2OH1

dz2
� x2 �

o2

c2T

� �
OH1 ¼ 0, (33a)

d2DH0

dz2
� x2 �

o2

c2L

� �
DH0 ¼ 0, (33b)

where subscripts H0 and H1 denote the Hankel transform.

4.2. Time-harmonic stresses and their Hankel transform

In terms of the displacements in the substrate, the normal stress along the z-axis, szz, and the shear stress
along the r-axis, tzr, are written as below [17]:

o2

rc4t
szz ¼

2

r

q
qr

r
qO
qz

� �
� g4

q2D
qz2
�

g2ðg2 � 2Þ

r

q
qr

r
qD
qr

� �
, (34a)

o2

rc4t
tzr ¼

q
qr

1

r

qðrOÞ
qr

� �
�

q2O
qz2
� 2g2

q2D
qrqz

. (34b)
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The Hankel transform of the above equations gives rise to the following relations [17]:

o2

rc4T
szzH0 ¼ 2x

dOH1

dz
� g4

d2DH0

dz2
þ g2ðg2 � 2Þx2DH0, (35a)

o2

rc4T
tzrH1 ¼ �x

2OH1 �
d2OH1

dz2
þ 2g2x

dDH0

dz
. (35b)

4.3. Vibration displacement due to single normal stress source

As illustrated in Fig. 6, the normal stress source over the clamped region on the substrate is expressed as
below:

szz ¼ s0 for z ¼ 0; rpa, (36)

where s0 is a constant and is determined by the vibrations in a micromechanical resonator.
Finally, combining Eq. (36) with Eqs. (31)–(33) and (35) leads to the average vibration displacement across

the clamped region [17]:

uz ¼ s0a2 cLo
2rc4T

P5 for z ¼ 0; rpa, (37)

where

P5ðgÞ ¼ Im

Z 1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p
F 0ðzÞ

zdz

 !
,

with z and F0(z) being the same as defined in the previous section.

5. Vibration displacement due to rectangular time-harmonic stress sources on the surface of a substrate

As illustrated in Figs. 7 and 8, rectangular time-harmonic stress sources on the surface of a substrate are
considered here and the rectangular coordinates are utilized accordingly. This section reviews the 3D elastic wave
equations in rectangular coordinates and their double Fourier transform, and combines the elastic wave equations
with the rectangular stress sources to obtain the expressions for the average vibration displacement on substrate.

5.1. 3D elastic wave equations and their double Fourier transform

The substrate is modeled as a semi-infinite elastic medium and its behavior can be described by the 3D
elastic wave theory, expressed as below [19,20]:

ðc2L � c2T ÞrðDÞ þ c2Tr
2~u ¼ �o2~u, (38)
x

z

o

Semi-infinite elastic medium 

Surface 

y

2d

2c 

x

z

o

Semi-infinite elastic medium 
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y

2d

2c 

σzz

τzy

Fig. 7. Single rectangular time-harmonic load is applied on the surface of a semi-infinite elastic medium (a) single normal stress source and

(b) single shear stress source.
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Fig. 8. Double time-harmonic loads are applied on the surface of a semi-infinite elastic medium (a) double normal stress sources (b)

double shear stress sources in parallel and (c) double shear stress sources in the opposite directions.
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where ~u represents the vector of the elastic wave amplitudes, having components, ðu; v;wÞ along the three axes.
Taking the same expressions as Eq. (29), cL and cT are the propagation velocities of longitudinal and
transverse elastic waves, respectively. The elastic dilatation, D, is expressed by:

D ¼
qu

qx
þ

qv

qy
þ

qw

qz
. (39)

Taking the divergence of Eq. (38) and dividing it by r gives rise to the following relation [19,20]:

r2 þ
o2

c2L

� �
D ¼ 0. (40)

To account for the geometrical infinity along both the x-axis and the y-axis, we use the double Fourier
transform and its inverse transform defined as below [23]:

gðZ; x; zÞ ¼
Z 1
�1

Z 1
�1

f ðx; y; zÞ eiðZxþxyÞ dZdx, (41a)

f ðx; y; zÞ ¼
1

4p2

Z 1
�1

Z 1
�1

gðx; Z; zÞ e�iðZxþxyÞ dxdy, (41b)
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where Z and x are the variables for this transform. Taking the double Fourier transform of Eqs. (38) and (40)
yields the following relations:

q2~uF

qz2
� b2~uF þ ðg2 � 1Þ

qDF

qz
~k � iZDF

~i � ixDF
~j

� �
¼ 0, (42)

q2DF

qz2
¼ a2DF , (43)

where a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 þ x2 � o2=c2L

q
and b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 þ x2 � o2=c2T

q
; ~i;~j; ~k denote the unit vectors along the three axes;

and the subscript F denotes the double Fourier transform.

5.2. Time-harmonic stresses and their double Fourier transform

In terms of the displacements in the substrate, the time-harmonic stresses along the three axes can be written
as [19,20]:

tzx ¼ rc2T
qu

qz
þ

qw

qx

� �
, (44a)

tzy ¼ rc2T
qv

qz
þ

qw

qy

� �
, (44b)

szz ¼ rc2T ðg
2 � 2ÞDþ 2rc2T

qw

qz
. (44c)

By taking the double Fourier transform of Eqs. (44), the following relations exist [19,20]:

tzxF
¼ rc2T

quF

qz
� iZwF

� �
, (45a)

tzyF
¼ rc2T

qv

qz
� ixwF

� �
, (45b)

szzF
¼ irc2T ð2� g2ÞðZuF þ xvF Þ þ rc2L

qwF

qz
. (45c)

5.3. Vibration displacement due to single time-harmonic stress source

This subsection focuses on deriving the vibration displacement caused by single time-harmonic stress
source. As illustrated In Fig. 7(a), a uniform normal stress source, szzo, is applied across the rectangular stress
source on the substrate. Then, the average vibration displacement across the rectangular clamped region
located at z ¼ 0, xA(�d, d) and yA(�c, c) is written as [19,20]:

w ¼
szzo

p3
dcog
2rc3T

P6 for z ¼ 0; xð�d; dÞ; yð�c; cÞ, (46)

where

P6ðgÞ ¼ Im

Z 1
�1

Z 1
�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 1

p
ðg2 � 2B2Þ2 � 4B2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � g2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 1

p dzdW

 !

is the imaginary part of the integral constant in the parenthesis; and z ¼ ðcL=oÞZ, W ¼ ðcL=oÞx, B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ W2

p
.

As illustrated in Fig. 7(b), a uniform shear stress source, tzyo, along the y-axis is located at the rectangular
clamped region. Then, the average vibration displacement across the rectangular clamped region located at
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z ¼ 0, xA(�d, d) and yA(�c, c) can be expressed as:

v ¼
tzyo

p3
dco
2rc3Tg

P7 for z ¼ 0; xð�d; dÞ; yð�c; cÞ, (47)

where

P7ðgÞ ¼ Im

Z 1
�1

Z 1
�1

ðW2 þ 2z2 � g2Þð2z2 � g2Þ � 4z2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ W2 � 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ W2 � g2

q
þ 2z2W2

4ðz2 þ W2 � g2Þðz2 þ W2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ W2 � 1

p
� ð2ðz2 þ W2Þ � g2Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ W2 � g2

q dzdW

0
B@

1
CA

with z ¼ ðcL=oÞZ and W ¼ ðcL=oÞx.

5.4. Vibration displacement due to double time-harmonic stress sources

As illustrated in Fig. 8, two uniform time-harmonic stress sources are simultaneously applied across the two
rectangular clamped regions, with a distance of L between the centers of the two regions on the surface of a
substrate. In order to obtain the mathematical expressions for the vibration displacement in this case, this
section directly utilizes the obtained results in the previous subsection, based on the superposition principle.

Fig. 8(a) illustrates two identical uniform normal stress sources, szzo, located at the two rectangular clamped
regions. Therefore, based on the superposition principle and Eq. (46), the average vibration displacement
across each clamped region, under the two stress sources, is written as below:

w ¼
�szzo

p3
dcog
2rc3T

P8 for
z ¼ 0; xð�d; dÞ; yð�c; cÞ

z ¼ 0; xðL� d;Lþ dÞ; yð�c; cÞ

					 , (48)

where

P8ðg; kÞ ¼ Im

Z 1
�1

Z 1
�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 1

p
ðg2 � 2B2Þ2 � 4B2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � g2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 1

p ½1þ cosð2pkgzÞ�dzdW

 !
,

with z, W, and B are the same as defined in P6.
As illustrated in Fig. 8(b), we consider the case where two identical uniform shear stress sources along the

y-axis are applied on the surface of a substrate. Based on the superposition principle and Eq. (47), the average
vibration displacement across each clamped region, under the two stress sources, is written as below:

v ¼
tzyo

p3
dco
2rc3Tg

P9 for
z ¼ 0; xð�d; dÞ; yð�c; cÞ

z ¼ 0; xðL� d;Lþ dÞ; yð�c; cÞ

					 , (49)

where

P9ðg; kÞ ¼ Im

Z 1
�1

Z 1
�1

ðW2 þ 2z2 � g2Þðg2 � 2z2Þ þ 4z2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ W2 � 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ W2 � g2

q
� 2z2W2

ð2ðz2 þ W2Þ � g2Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ W2 � g2

q
� 4ðz2 þ W2 � g2Þðz2 þ W2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ W2 � 1

p
0
B@

� ½1þ cosð2pkgzÞ�dzdW

1
CA.

Fig. 8(c) illustrates two identical shear stress sources, tzxo, along the x-axis but in the opposite directions, at
the two clamped rectangular regions on the surface of a substrate. Similarly, based on the superposition
principle and Eq. (47), the average vibration displacement across each clamped region, under the two stress
sources, is written as below:

u ¼
tzxo

p3
bco
2rc3Tg

P10, (50)
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where

P10ðg; kÞ ¼ Im

Z 1
�1

Z 1
�1

ðz2 þ 2W2 � g2Þðg2 � 2W2Þ þ 4W2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ W2 � 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ W2 � g2

q
� 2z2W2

ð2z2 þ 2W2 � g2Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ W2 � g2

q
� 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ W2 � 1

p
ðz2 þ W2 � g2Þðz2 þ W2Þ

0
B@ .

� ½1� cosð2pkgzÞ�dzdW

1
CA.

Note that the subtraction sign in the last term of the integrand is due to the opposite directions of the two
stresses.
6. Discussion

Up to now, the mathematical expressions for the average vibration displacement on substrate, under those
typical time-harmonic stress sources in micromechanical resonators, have been derived. These expressions are
further summarized into Table 1 for the configuration of a resonator located within a substrate and Table 2
for the configuration of a resonator sitting on top of a substrate, respectively. It is worth mentioning that
because the excitation sources for the elastic waves are from the vibrations of a micromechanical resonator,
the frequency of the elastic waves is the same as the resonant frequency of the micromechanical resonator
under study. The key design parameters of a resonator required for calculating the average vibration
displacement on substrate are (1) the uniform stress amplitude on a clamped region, (2) the area of a clamped
region, (3) resonant frequency, and (4) the distance of the centers of the two clamped regions for a resonator
with two clamped regions, which has been previously expressed in terms of the dimensionless parameter, wave
number (k).

Since stress sources are considered uniform and the derived vibration displacement is also the averaged
value of the vibration displacement across a clamped/source region, support loss, Eq. (2), can be further
simplified as below:

DW ¼ p � uniform stress � average vibration displacement � clamped region area. (51)

Based on this equation, the mathematical expressions for support loss in a micromechanical resonator are
also included in Tables 1 and 2.
Table 1

Stress sources located within a substrate and their corresponding average vibration displacements across a clamped region.

Stress source Average vibration displacement Eq. Support loss

Single shear stress source
v ¼ bt0

4

p
1þ u

Eð1� uÞ
P1ðgÞ

� �
(17) DW ¼ 4b2ht20

1þ u
E � ð1� uÞ

P1ðgÞ
� �

Single normal stress source
u ¼ bs0

4

p
1þ u

Eð1� uÞ
P2ðgÞ

� �
(20) DW ¼ 4b2hs20

1þ u
Eð1� uÞ

P2ðgÞ
� �

Double shear stress sources v ¼
bt0
8E
ðuþ 1Þðu� 3Þ þ

bt0
2pE

P3ðg; kÞ
(23) DW ¼ pb2ht20

ðuþ 1Þðu� 3Þ

4E
þ

P3ðg; kÞ
pE

� �

Double normal stress sources u ¼
bs0
8E
ðuþ 1Þðu� 3Þ þ

bs0
2pE

P4ðg; kÞ
(26) DW ¼ pb2hs20

ðuþ 1Þðu� 3Þ

4E
þ

P4ðg; kÞ
pE

� �
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Table 2

Stress sources located on the surface of a substrate and their corresponding average vibration displacements across a clamped region (note:

except that the first row denotes a circular stress source, all the rest denote rectangular stress sources.).

Stress source Average vibration displacement Eq. Support loss

Single normal stress source (circular) uz ¼ szzoa2o
g

2rc3T
P5ðgÞ (37) DW ¼ p2s2zzoa4o

g
2rc3T

P5ðgÞ
� �

Single normal stress source w ¼
szzodco

p3
g

2rc3T
P6ðgÞ

(46)
DW ¼

2d2c2s2zzoo
p2

g
rc3T

P6ðgÞ
� �

Single shear stress source v ¼
tzyodco

p3
1

2rc3T g
P7ðgÞ

(47)
DW ¼

2d2c2t2zyoo

p2
1

rc3Tg
P7ðgÞ

� �

Double normal stress sources w ¼
�szzodco

p3
g

2rc3T
P8ðg; kÞ

(48)
DW ¼

�4d2c2s2zzoo
p2

g
rc3T

P8ðg; kÞ
� �

Double shear stress sources in parallel v ¼
tzyodco

p3
1

2rc3T g
P9ðg; kÞ

(49)
DW ¼

4d2c2t2zyoo

p2
1

rc3Tg
P9ðg; kÞ

� �

Double shear stress sources in opposite u ¼
tzxodco

p3
1

2rc3Tg
P10ðg; kÞ

(50)
DW ¼

4d2c2t2zxoo
p2

1

rc3T g
P10ðg; kÞ

� �
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6.1. Support loss versus design parameters of a resonator and substrate materials

Based on the mathematical expressions for support loss listed in Tables 1 and 2, this subsection focuses on
addressing the insights on the relation of support loss versus the key design parameters of a micromechanical
resonator and substrate materials. As to support loss in a micromechanical resonator located within a
substrate, the following insights have been observed, regardless of stress types and single or double stress
sources:
(1)
 Design parameters of a micromechanical resonator: Support loss is linearly proportional to the squared
stress, and the squared width of the clamped region. At the same time, support loss is proportional to the
thickness of the resonator. Interestingly, support loss in a resonator with single clamped region is
independent of the resonant frequency, while support loss in a resonator with two clamped regions is not
related to the resonant frequency explicitly, but depends on the wavenumber of the distance between the
centers of the two clamped regions.
(2)
 Material properties of the substrate: Support loss is linearly proportional to the reciprocal of the Young’s
modulus of the substrate material. This indicates that the stiffer the substrate material is, the less support
loss is. In addition, support loss is also related to the Poisson’s ratio of the substrate material, because the
elastic waves in the substrate propagate along both the x-axis and y-axis.
As to support loss in a micromechanical resonator sitting on top of a substrate, the following insights have
been observed, regardless of stress types and single or double stress sources:
(1)
 Design parameters of a micromechanical resonator: Support loss is proportional to both the squared stress
and the square of the clamped region area. At the same time, support loss is linearly proportional to the
resonant frequency of the resonator. This explains the experimental observation [24] that, as to
micromechanical disk resonators sitting on top of the same substrate, a micromechanical disk resonator
with a large clamped region shows a smaller Q than the one of the same design with a small clamped region
(the same resonant frequency and same stored maximum vibration energy in the resonators). Support loss
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in a resonator with two clamped regions is closely related to the wavenumber of the distance of the centers
of the two clamped regions.
(2)
 Material properties of the substrate: Support loss is linearly proportional to the term, 1=2rc3Tg, for single
and double shear stress sources and the term, g=2rc3T , for single and double normal stress sources. This
indicates that support loss is proportional to E3/2 of the substrate material. Certainly, support loss is also
related to the Poisson’s ratio and density of the substrate material.
6.2. Numerical values for the imaginary parts of the integral constants related to different time-harmonic sources

Now, we consider the numerical values for the imaginary parts of the integral constants related to the
expressions for the average vibration displacement on substrate. It should be noted that only the imaginary
value of an integral constant will contribute to support loss, because it is out-of-phase with the time-harmonic
stress. Here, we need to point out that the integrals, P3 and P4, are in fact the imaginary values of their
original integrals, whose imaginary parts can be separated from their real parts. The numerical values for these
integral constants can be calculated using mathematical software, such as Matlab.

As to single stress sources, the imaginary parts of the integral constants are solely the function of the
Poisson’s ratio of the substrate materials, and is completely independent of all the design parameters of a
resonator. Consequently, Table 3 lists the numerical values for these imaginary parts corresponding to those
several typical materials used in the MEMS fabrication technology, where the material properties of single
crystal silicon (SCS) along both the /1 0 0S and /1 1 0S orientations are used [25,26]. As shown in Table 3,
the numerical values for the imaginary parts of the integral constants decrease with the Poisson’s ratio, except
the case for the single shear stress source from a micromechanical resonator sitting on top of a substrate.
However, the values for these imaginary parts do not vary much with the Poisson’s ratio. Accordingly, the
Young’s modulus of the substrate plays a relatively important role in determining support loss.

As to double stress sources, the numerical values for the imaginary parts of the integral constants are
correlated to the Poisson’s ratio of the substrate material and the design dimensionless parameter of a
resonator–the wavenumber, which is included in the cosine term in the integrals. Figs. 9 and 10 show the
relation of the numerical values of the imaginary parts of the integral constants, P3 and P4, versus the
wavenumber of the distance between the centers of the two stress sources within a substrate, respectively. It is
clear from these figures that the distance between the two clamped regions can significantly affect the
numerical values for the imaginary parts and consequently support loss. Figs. 11–13 illustrate the relation
between the numerical values for the imaginary parts of the integral constants, P9, P11, and P14, and the
distance (in terms of the wavenumber, k) between the centers of the two stress sources on top of a substrate,
respectively. The Poisson’s ratio used for all these figures is 0.064, which is taken from the /1 1 0S orientation
of SCS. As to the case of the two normal stress sources and two shear stress sources in parallel, the numerical
values for the imaginary parts drop significantly as the distance increases within the first half wave length, and
then becomes stable. On the contrary, as to the case of the two shear stress sources in the opposite directions,
the numerical value for the imaginary part increases dramatically within the first half wavelength and then
becomes stable.
le 3

numerical values for the imaginary parts of the integral constants related to single time- harmonic sources.

Silicon /1 1 0S Polydiamond Polysilicon Silicon nitride Silicon /1 0 0S

sons’ratio (u) 0.064 0.12 0.22 0.27 0.28

ng’s Modulus (E, GPa) 169 1120 150 79 130

sity (kg/m3) 2330 3440 2330 3100 2330

g) 0.46958 0.40266 0.37156 0.34106 0.33505

g) 0.31146 0.26661 0.24586 0.22554 0.22153

g) 0.21798 0.18385 0.20752 0.16935 0.16619

g) 1.37009 1.15544 1.30413 1.06410 1.04421

g) 6.62385 7.16988 6.75023 7.50236 7.5872
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Fig. 9. The relation between the value of P3 and the wavenumber of the centers of the two clamped regions, corresponding to the case

shown in Fig. 5(a).

Fig. 10. The relation between the value of P4 and the wavenumber of the centers of the two clamped regions, corresponding to the case

shown in Fig. 5(b).

Fig. 11. The relation between the imaginary part of P8 and the wavenumber of the centers of the two clamped regions, corresponding to

the case shown in Fig. 8(a).
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6.3. Experimental verification

As expressed in Eq. (1), the measured quality factor of a micromechanical resonator vibrating in vacuum is
the combination of the three loss mechanisms. Therefore, the quantitative experimental verification of the
obtained expressions for the average vibration displacement on substrate is extremely difficult. Fortunately, as
to the cases of the single shear stress and double stress sources shown in Figs. 4(a) and 5(a), respectively, the
obtained expressions for their average vibration displacement on substrate have been quantitatively validated
using systematical experimental data in Ref. [12], where TED and surface loss have also been simultaneously
quantified. The accuracy of the derived expression for the case of a single circular normal stress source shown
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Fig. 12. The relation between the imaginary part of P9 and the wavenumber of the centers of the two clamped regions, corresponding to

the case shown in Fig. 8(b).
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Fig. 13. The relation between the imaginary part of P10 and the wavenumber of the centers of the two clamped regions, corresponding to

the case shown in Fig. 8(c).
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in Fig. 6 has been also quantitatively verified using experimental data of micromechanical disk resonators in
Ref. [15], where TED and surface loss are not significant relative to support loss. The details about the
experimental verification can be found in these two references. Since the same assumptions and methodology
are employed to analyze the rest cases studied in this work, it is expected that the derived corresponding
expressions for the average vibration displacement on substrate will also reflect reality. Certainly, the
experimental study of the rest cases will help confirm their accuracy in the future.
7. Conclusion

This paper presents a comprehensive description of the vibration displacement on substrate under several
typical time-harmonic stress sources in micromechanical resonators. Combined with the time-harmonic stress
sources from a micromechanical resonator under study, the obtained mathematical expressions for the
vibration displacement on substrate enable the quantitative evaluation of support loss in micromechanical
resonators. Furthermore, the relation of support loss versus some key design parameters of a micromechanical
resonator has been explored and offers the insights on design improvement for reducing support loss.
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